Math 155, Lecture Notes- Bonds

Name \qquad

Section 8.2 Integration by Parts

Recall that the product rule for differentiation states that
$\frac{d}{d x}(u(x) v(x))=u(x) \frac{d}{d x}(v(x))+v(x) \frac{d}{d x}(u(x))$
$u(x) \frac{d}{d x}(v(x))=\frac{\text { or }}{d x}(u(x) v(x))-v(x) \frac{d}{d x}(u(x))$
Integration on both sides of this equation gives the following:
$\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x$
Rewriting with $d v$ and $d u$ differentials gives us

$$
\int u d v=u v-\int v d u
$$

THEOREM 8.I Integration by Parts

If u and v are functions of x and have continuous derivatives, then

$$
\int u d v=u v-\int v d u
$$

Ex. 1 Integrate: $\int x \sin (x) d x$

$$
\int u d v=u v-\int v d u
$$

Ex. 2 Evaluate: $\int \ln (3 x) d x$

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \text { Ex.3 Evaluate: } \int x^{2} \cos (x) d x
\end{aligned}
$$

$$
\int u d v=u v-\int v d u
$$

Ex. 4 Evaluate: $\int_{0}^{1} x \arcsin \left(x^{2}\right) d x$

$$
\int u d v=u v-\int v d u
$$

Ex. 5 Evaluate: $\int x^{2} e^{2 x} d x$

$$
\int u d v=u v-\int v d u
$$

Ex. 6 Evaluate: $\int e^{x} \cos (2 x) d x$

$$
\begin{gathered}
\int u d v=u v-\int v d u \\
\text { Ex. } 7 \text { Evaluate: } \int_{0}^{\frac{\pi}{4}} x \sec ^{2}(x) d x
\end{gathered}
$$

Tabular Method
$\int u d v=u v-\int v d u$
Ex. 8 Evaluate: $\int x^{3} e^{-2 x} d x$

Guidelines for Integration by Parts

1. Try letting $d v$ be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand.
2. Try letting u be the portion of the integrand whose derivative is a function simpler than u. Then $d v$ will be the remaining factor(s) of the integrand.

Summary of Common Integrals Using Integration by Parts

Summary of Common Integrals Using Integration by Parts

1. For integrals of the form

$$
\int x^{n} e^{a x} d x, \quad \int x^{n} \sin a x d x, \quad \text { or } \quad \int x^{n} \cos a x d x
$$

let $u=x^{n}$ and let $d v=e^{a x} d x, \sin a x d x$, or $\cos a x d x$.
2. For integrals of the form

$$
\int x^{n} \ln x d x, \quad \int x^{n} \arcsin a x d x, \quad \text { or } \quad \int x^{n} \arctan a x d x
$$

let $u=\ln x, \arcsin a x$, or $\arctan a x$ and let $d v=x^{n} d x$.
3. For integrals of the form

$$
\int e^{a x} \sin b x d x \quad \text { or } \quad \int e^{a x} \cos b x d x
$$

let $u=\sin b x$ or $\cos b x$ and let $d v=e^{a x} d x$.

